Skip to main content
time_bucket_gapfill works similarly to time_bucket, but adds gapfilling capabilities. The other functions in this group must be used in the same query as time_bucket_gapfill. They control how missing values are treated.
time_bucket_gapfill must be used as a top-level expression in a query or subquery. You cannot, for example, nest time_bucket_gapfill in another function (such as round(time_bucket_gapfill(...))), or cast the result of the gapfilling call. If you need to cast, you can use time_bucket_gapfill in a subquery, and let the outer query do the type cast.

Samples

Use time_bucket_gapfill without a gapfilling algorithm

Get the daily average metric value. Use time_bucket_gapfill without specifying a gapfilling algorithm. This leaves the missing values as NULL:
SELECT time_bucket_gapfill('1 day', time) AS day,
    avg(value) as value
    FROM metrics
    WHERE time > '2021-12-31 00:00:00+00'::timestamptz
        AND time < '2022-01-10 00:00:00-00'::timestamptz
    GROUP BY day
    ORDER BY day desc;
day                    |              value
-----------------------+--------------------
2022-01-09 00:00:00+00 |
2022-01-08 00:00:00+00 |  48.61293155993108
2022-01-07 00:00:00+00 | 54.388267525986485
2022-01-06 00:00:00+00 |
2022-01-05 00:00:00+00 | 58.257520634785266
2022-01-04 00:00:00+00 |  46.09172424261765
2022-01-03 00:00:00+00 |  42.53498707820027
2022-01-02 00:00:00+00 |
2022-01-01 00:00:00+00 |  47.84420001415975
2021-12-31 00:00:00+00 |
(10 rows)

Use time_bucket_gapfill and carry last value forward

Get the daily average metric value. Use locf to carry the last value forward if a value is missing. Note that avg is nested inside locf, and not the other way around.
SELECT time_bucket_gapfill('1 day', time) AS day,
    locf(avg(value)) as value
    FROM metrics
    WHERE time > '2021-12-31 00:00:00+00'::timestamptz
        AND time < '2022-01-10 00:00:00-00'::timestamptz
    GROUP BY day
    ORDER BY day desc;
day                    |              value
-----------------------+--------------------
2022-01-09 00:00:00+00 |  48.61293155993108
2022-01-08 00:00:00+00 |  48.61293155993108
2022-01-07 00:00:00+00 | 54.388267525986485
2022-01-06 00:00:00+00 | 58.257520634785266
2022-01-05 00:00:00+00 | 58.257520634785266
2022-01-04 00:00:00+00 |  46.09172424261765
2022-01-03 00:00:00+00 |  42.53498707820027
2022-01-02 00:00:00+00 |  47.84420001415975
2022-01-01 00:00:00+00 |  47.84420001415975
2021-12-31 00:00:00+00 |
(10 rows)

Use time_bucket_gapfill and use linear interpolation

Get the daily average metric value. Use interpolate to linearly interpolate the value if it is missing. Note that avg is nested inside interpolate.
SELECT time_bucket_gapfill('1 day', time) AS day,
    interpolate(avg(value)) as value
    FROM metrics
    WHERE time > '2021-12-31 00:00:00+00'::timestamptz
        AND time < '2022-01-10 00:00:00-00'::timestamptz
    GROUP BY day
    ORDER BY day desc;
day                    |              value
-----------------------+--------------------
2022-01-09 00:00:00+00 |
2022-01-08 00:00:00+00 |  48.61293155993108
2022-01-07 00:00:00+00 | 54.388267525986485
2022-01-06 00:00:00+00 |  56.32289408038588
2022-01-05 00:00:00+00 | 58.257520634785266
2022-01-04 00:00:00+00 |  46.09172424261765
2022-01-03 00:00:00+00 |  42.53498707820027
2022-01-02 00:00:00+00 | 45.189593546180014
2022-01-01 00:00:00+00 |  47.84420001415975
2021-12-31 00:00:00+00 |
(10 rows)

Use time_bucket_gapfill with a timezone argument

Get the daily average metric value, using Europe/Berlin as the timezone. Note that daily time buckets now start at 23:00 UTC, which is equivalent to midnight in Berlin for the selected dates:
SELECT time_bucket_gapfill('1 day', time, 'Europe/Berlin') AS day,
    interpolate(avg(value)) as value
    FROM metrics
    WHERE time > '2021-12-31 00:00:00+00'::timestamptz
        AND time < '2022-01-10 00:00:00-00'::timestamptz
    GROUP BY day
    ORDER BY day desc;
day                    |              value
-----------------------+--------------------
2022-01-09 23:00:00+00 |
2022-01-08 23:00:00+00 |  48.65079127913703
2022-01-07 23:00:00+00 |  47.31847777099154
2022-01-06 23:00:00+00 |  55.98845740343859
2022-01-05 23:00:00+00 |  55.61667401777108
2022-01-04 23:00:00+00 |  58.74115574522012
2022-01-03 23:00:00+00 |  45.77993635988273
2022-01-02 23:00:00+00 |  41.78689923453202
2022-01-01 23:00:00+00 | 24.324313477743974
2021-12-31 23:00:00+00 |  48.86680377661261
2021-12-30 23:00:00+00 |
(11 rows)

Available functions

Bucket function

Interpolators

  • locf(): fill in missing values by carrying the last observed value forward
  • interpolate(): fill in missing values by linear interpolation