Key features
- Adds vector column directly to source table
- No separate view created
- Requires
chunking_none()(no chunking) - Exactly one embedding per row
- Simpler schema with fewer objects
Workflow
- Application inserts data with NULL in embedding column
- Vectorizer detects the NULL value
- Vectorizer generates embedding
- Vectorizer updates row with embedding value
Samples
Basic usage
Store embeddings in a column for pre-chunked data:With specific embedding model
Arguments
| Name | Type | Default | Required | Description |
|---|---|---|---|---|
embedding_column | NAME | - | ✔ | Name of the column to add to the source table for storing embeddings |
Returns
A JSON configuration object for use increate_vectorizer().
Important notes
- Chunking must be disabled: Use
chunking => ai.chunking_none()when using column destination - One embedding per row: This approach cannot handle multiple chunks per source row
- Best for short text: Ideal when text is already chunked or naturally short (< 512 tokens)
Related functions
destination_table(): alternative approach with separate embeddings tablechunking_none(): required chunking configuration for column destinationcreate_vectorizer(): main function using this configuration